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Diffraction by Crystals with Planar Faults. I. General Theory 
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Kinematical diffraction from a crystal having planar faults is described by a systematic writing of the 
Patterson function and its Fourier transform for the general case of an arbitrary number of different 
kinds of layer, describing the faults in terms of a fault vector plus an addition, or subtraction, of scat- 
tering matter. The general series expression is readily simplified to deal with a wide variety of special 
cases. Particular examples include Wadsley-type shear faults associated with non-stoichiometry of oxides 
and the deformation and growth faults of simple close-packed structures. 
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1. Introduction 

The problem of calculating diffraction intensities for 
crystals having planar faults has been treated by many 
authors. The literature abounds with solutions ranging 
from the very elegant and general (Jagodzinski, 
1949a, b,c; 1954, Kakinoki & Komura, 1952, 1954a, b; 
1965; Kakinoki, 1967) to the relatively simple and 
direct treatments of particular cases (see Warren, 1969). 
The only possible justification for our presentation of 
yet another treatment is that a somewhat different 
formulation of the diffraction problem appears to lead 
by readily comprehended steps to a general solution 
from which it is relatively easy to derive expressions 
which are particularly suited to the description of 
diffraction from some commonly occurring types of 
disorder. 

In recent years a great deal of evidence has been 
obtained by X-ray or electron diffraction and, in 
particular, by direct images of crystal structures in the 
electron microscope (Allpress & Sanders, 1973; 
Iijima, 1973; Cowley & Iijima, 1975) that variations 
of stoichiometry of inorganic materials may be 
accommodated by the existence of planar faults at 
which there is a local variation of the cation/anion 
ratio. Such faults may take the form of shear planes 
(Wadsley faults), micro-twins or more complicated 
configurations and may occur in disordered, partially 
ordered or well ordered arrays. 

Streaking in diffraction patterns has frequently been 
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Fig. 1. The transition from a structure 0t(r) with translation 
vector R, to a structure 0j(r) with translation vector Rj 
through a fault layer of content 0~+Atj and a shift vector 
Slj .  

observed and attributed to such faults but detailed 
calculations of diffraction intensities for such cases 
have not been made. The occurrence of a modification 
of the structure at the fault plane adds considerable 
complication to the diffraction calculations. 

An approach to the diffraction problem which is 
particularly suited to this type of fault structure was 
evolved in the course of the efforts to understand the 
streaking observed in electron diffraction patterns of 
magnesium fluorogermanate which are described in 
part II of this series (Cowley, 1976). It was soon 
realized that a generalization of the same type of treat- 
ment would provide a convenient means for dealing 
with a much wider range of diffraction problems and 
indicate the basis for useful approximations which 
would allow rapid prediction of the type of diffraction 
effects to be expected. In this paper we present the 
general formulation for kinematical diffraction, with 
some examples of applications to relatively simple, 
familiar types of faulting. 

2. Most general formulation 

We consider a crystal to be made up of an arbitrary 
number of different types of layer. For kinematical 
X-ray diffraction, we characterize the i type of layer 
by an electron-density distribution function Qi(r) 
referred to some suitably chosen origin. When only i- 
type layers are present the ordered stacking is given by 
a translation vector Rl between equivalent origin 
points of the layers. When a fault occurs, the-sequence 
of layers of content 0~(r) with translation yector R~ 
changes to a sequence of layers of content Qj(r) with 
translation vector Rj. No assumptions regarding the 
translation vectors within the layers need be made. 
When such a fault occurs, the Q~ layer at the fault is 
modified by the addition (or subtraction) of electron 
density, A~/r), and the vector Rl is modified to 
R~ + S~j (see Fig. 1). 

We assume initially that the probability for such a 
fault is ~j.  The implied assumption that the faults 
occur at random subject to this one probability value 
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is not so restrictive as may first appear. If particular 
sequences of planes of atoms tend to recur, each of 
these sequences may be described as a separate type of 
layer. Thus, in the terminology of Jagodzinski (1949a), 
it is possible to include the effect of a Reichweite greater 
than unity. 

The a priori probability of occurrence of an/-type 
layer, gl, is given by equating transitions to and from 
the i type as 

g ,=(  ~ ,  gfl~:t)/~,j obj. (1) 

We now write the generalized Patterson function 
P(r) in terms of components involving 0 ,1 ,2 , . . .  
interlayer vectors R,. The zero component involving 
only intralayer vectors can be written 

P0(r) = N  Z ,  gt[(1-A,) {0t(r) * Q,(-r)} 

+ * (Q,+3t31, (2) 

where we have put At=Yjcq:, so that (1-A~) is prob- 
ability that an i layer will not be modified by a fault. 
The summation over j gives the intralayer vectors for 
layers modified by faults. The total number of layers 
is N. 

Fourier transforming (2) gives the corresponding 
contribution to the intensity: 

Io/N= ~ ,  g,[(1-A,)IF, I 2 + ~ j  ~,:[F, +G,jI2], (3) 

where F~ and G~j are the Fourier transforms of 0~ and 
A~j respectively. 

For vectors between nearest-neighbor layers we 
write down, in turn, the components for the various 
possible pairs. The origin layer may be O~, followed by 
either Q~ or Ql+Aij, or the origin layer may be Q~+A~j 
followed by either 0j or 0j+Ajk, so that 

Px(r) = N  ~ ,  g f l ( r -R , )  • [Qt(-r) * {(1 -A,)~t(r) 
+ ~,.f a,:(Q,+ A,,)} + ~ :  ~, :a(r-  St,) • {0,(-r)  

Fourier transforming then gives 

Ix~N= ~,~ exp {2zciu. Rt} [g~(1- A,)F'~ {(1-  A,)F~ 
+ ~oh,(F,+at~)}+gt ~yoh:(Ft +Gt:) 
xexp {27tiu. S,j}. {(1-Aj)F~ 

+ + ej )}l 
= ~ ,  gt[(1 - A~)F~ {F~ + ~,j cq~G~} 
+ ~,j oqy(F'~ +G~j)exp {2zciu. Sij} 
x {F: + ~,~, O~jkGjk}] exp {2zdu. R}. (4) 

In this and 
expression 

subsequent terms, we have the recurring 

F, + ~,j cqjG,j- F; , (5) 

which represents the average/-type structure amplitude. 
For vectors between second-nearest layers we may 

write down, similarly, all possible layer pairs and 
Fourier transform to give, using (5), 

Iz/N= ~,tg,F~ exp {2zciu. 2R,} [(1-A,)F; 
+ ~ ,  oh,Fj exp {2zdu. St,}] 
+ Z, g, ~,; oh:(F~ + G*:) 
xexp {Dtiu. (Rt+Rj+S, j )} .  [(1-Aj)F} 
+ ~k ~,kF~, exp {2=iu. S:k}] • 

This and subsequent terms may be written more simply 
if we put 

B t = ( 1 -  At)Fi + ~j  cq:Fj exp {2niu. S,j}, (6) 

which may be regarded as an average structure 
amplitude for an /-type layer plus its possible neigh- 
bors. 

Similarly we may write the contributions for third- 
nearest, fourth-nearest neighbor layers and so on, and 
see a consistent pattern emerging from which the 
general expression can be deduced. For vectors - R t  
in the opposite direction we obtain the terms 1_,IN= 
I*./N. 

We may separate out contributions from sets of 
vectors which include no fault. These give series of the 
form 

1 + ( 1 - A l )  exp {2niu. Rt} 

+ ( 1 - A t )  z exp {2niu. 2R t}+ . . .  

which are summed to give 

[1- (1-A~)  exp {2niu. R~}] -x. 

The expression for the total intensity is then written 
as a series of terms involving no faults, one fault only, 
two faults only and so on: 

I/N= ~, gt(1 - A,)[F,I 2 + ~ t  gt ~ j  chjlFt + 6t:12 

+ ~,,gt(1-A,)F7 exp {27tiu. Rt} 

[ exp {2niu. R,} [ 
x F ; +  1 - ( 1 - A t )  exp{2-~.R~} B, 

exp {2niu. (Rj+S~j)} [Bj 

+ ~k~:k 1 "--0-----~k) exp ~ -  R k ) e x p  {2~iu. (Rk+Sjk} ..[Bk+" • • ] ] ] ]  

+ ~,,g, ~,joh:(F; +G;j)exp {27tiu. (Ri+Sij)} 

r rexp {2zciu. R:} [I'Bj 
l Fj + (2--~-~. R,} 

× 

+ . . . ] ]  +c.c . .  (7) 

The components corresponding to vectors starting on 
non-fault planes and fault planes are written separately. 
The initial terms in these two parts are different but 
the bracket starting with Bj and subsequent brackets 
are identical. In these expressions the addition of each 
bracket introduces the possibility of a further fault. 
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If the probability of faults is low, only a small number 
of brackets needs to be considered to give a good 
representation of the intensity distribution. There will 
tend to be maxima of intensity, as expected, when 
u .  Rt is close to an integer, i.e. near the positions of 
the reciprocal-lattice points for the ordered stacking 
of the individual types of layer. 

The expression (7) can be applied in principle to 
cases of much greater complication than are normally 
met in practice. Its chief virtue is that it may be sim- 
plified considerably, often giving series which may be 
summed algebraically for particular cases of interest. 

3. Special cases 

(1) All aij=O 
In many situations, the modification of the structures 

of the layers at the fault planes is negligibly small. In 
some cases, the influence of even large modifications 
on the intensities of interest may be small (see part II). 
If in equation (7) we put all G~s = 0 there is a consider- 
able simplification. Instead of (5) and (6) we have 

F',=F,,  
B,=(1-A,)F,+ ~so~,sFsexp {2niu. S,s}. (8) 

The two parts of (7) may then be combined to give a 
single series: 

g,F~ [F~ 
I/N= ~,~ 1 - ( 1 - A , )  exp {2niu. R~} 

~sexp {2niu. (R~+S~s) } [F s 

+ ' 

+ c .c . -  ~ g~lF~l 2. (9) 

(2) One type of layer only: G=0 
A particularly simple case is that for which there is 

only one type of layer, with a probability a that a fault 
occurs which displaces the layers by a vector S with no 
modification of the layers at the fault. Then (9) 
becomes 

F* [ 
I/N= 1 - ( l - a )  exp {2niu. R} F 

exp {2niu. (R+S)} i" F 
+ 1 - O - -  ~)) e--x-p ~ .R} [ 

+ 1-0-  b " 
+ c . c . - [ f l L  

The expression in square brackets is a geometric series 
which sums to give 

[ aexp{2n iu . (R+S)}  1 
F 1 -  1 - ( 1 - ~ - p -  {2n/u. R}] 

so that 

I/N=IFI2[(1-(1-c 0 exp {2niu. R} 
- ~  exp {2niu. (R +S)}} -1 +c.c.-11 
= [F[2~(1-a) (1 -cos  2nu. S) 
× [1 - ~ + ~ 2 - ( 1  - a )  cos 2nu. R 
- a  cos 2nu. (R+S) +~(1 - ~ )  cos 2nu. S] -1. 

(10) 

If c~ is small, this gives peaks of intensities close to the 
reciprocal-lattice points for which u .  R is an integer, 
except when u .  S is nearly integral. The intensity 
maxima are actually displaced from these reciprocal- 
lattice points by an amount proportional to ~. Thus if 
2nu. R=2nn+e, the displacement of the maximum 
of intensity is given by minimizing the denominator 
with respect to ~ as 

~= - ~  sin (2nu. S)/{1-ct(1 - cos  2nu. S)}, (11) 

and the maximum intensity value is 

Imax/N~2lfl2(1 +c0/a(1-cos 2zm. S). (12) 

The magnitude and direction of the displacements of 
the intensity maxima from the reciprocal-lattice point 
may be seen to correspond to those given by intuitive 
appreciation of the way in which the fault vector S 
tends to modify the average periodicities of the struc- 
ture. 

A particular case of such an intensity distribution is 
discussed in part II. Many observations of intensity 
maxima displaced from reciprocal-lattice-point posi- 
tions have been reported and discussed in the liter- 
ature. Notable examples include the diffuse scattering 
associated with heavy radiation-damage effects in 
close-packed metals and oxides (Austerman & Miller, 
1965; Keating, 1968; Nimura, 1955) and the diffuse 
scattering associated with the fie)  transformations of 
various Ti and Zr alloys (Moss, Keating & Axe, 1973; 
Borie, Sass & Andreassen, 1973). In each case an 
analysis of the scattering in terms of the model we have 
used here provides an immediate indication of the type 
of fault involved and the approximate frequency of 
occurrence of the fault. If, as in the latter example, the 
individual layers are of finite extent, the broadening of 
the diffuse peaks in directions parallel to the layers may 
often, to a good approximation, be treated separately. 

(3) One type of layer only: G#O 
If, as in some types of Wadsley faults in non- 

stoichiometric oxides, there is only one type of layer 
but this is modified at the shear plane, the expression 
equivalent to (10) derived from the general solution (7) 
includes terms in [F[ 2, [G [2 and the real and imaginary 
parts of F'G, thus: 
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I(u)/N=c~(1-~) [[FI2(1-cos 2zm. S) 
+ ( R e  F ' G )  {1 +cos 2zm. ( R+S)  
- cos 2zm. R -  cos 2zm. S} 
- ( I m  F'G) (sin 27m. R + (1 - 2 ~ )  sin 27m. S 
- sin 2zm. (R + S)} 
+IGl2(1-cos  2zm. R)] 
× [ 1 - c ~ + ~ 2 - ( 1 - ~ )  cos 2rcu. R 

- ~ cos 2rm. (R + S) 
+~(1 - a )  cos 2rm. S] -1 (13) 

It may seem from this expression that the faulted 
layers contribute an inordinately large amount to the 
intensity since G occurs with the same weighting as F 
in spite of the fact that the ratio of faulted to non- 
faulted layers is ~. However it may be noted that for 

small the intensity maxima occur very close to the 
reciprocal-lattice points given by u .  R integral and 
when cos 2nu.  R =  1 all the terms in the first square 
bracket of (13) vanish except for the term in IFI 2. 
Hence if, as often happens, it is the positions and 
relative heights of the intensity maxima which are the 
main points of interest, the assumption that G = 0  will 
not lead to serious errors (see part II). 

4. Non-random faults 
The tendency for faults to cluster together or to 

avoid one another can be introduced readily by taking 
sums of intensity expressions. For the simple case of 
one type of fault only and G=O, for example, if the 
expression (10) is denoted by l~(u), we may consider an 
intensity distribution 

I(u) = aI~(u) + cly(u), (14) 

where a + c = 1 and a~ + c7 > 0. This will represent a 
situation where the probability of no fault in n layers 
takes the form 

a(1 - ~)" -I- c(1 - ~)". (15) 

If  ) ,>~ and c is positive, the effect is to make the 
probability of a fault greater for small n than for large 
n. If  c is negative with 7 > ~, the effect will be to decrease 
the probability of a fault for small n, i.e. the fault planes 
will tend to avoid each other. 

For nearest-neighbor planes, for example, the prob- 
ability of a fault will be ac~ + c? which is less than c~ for 
c negative, while for n large the fault probability per 
layer becomes as which is greater than c~. For the 
general expression (7), the introduction of non-random 
faulting is correspondingly more complicated. 

5. Faults in close-packed structures 
In order to demonstrate some of the virtues of this 

type of approach, we consider briefly its application 
to the familiar case of faulting in simple, close-packed 
structures. As is customary we describe the sequence 
of close-packed hexagonal layers by the notation 
ABABAB. . .  for the h.c.p, and ABCABCA. . .  for the 

f.c.c, structure and represent the packing sequence, 
with faults, by diagrams of the sections of the struc- 
tures on (110) planes, as in Fig. 2. It is sufficient to 
consider the two-dimensional unit cells with x axes in 
the planes of the layers and the c axes corresponding 
to the interlayer R vectors used in our general treat- 
ment. 

For h.c.p, structures we consider a c axis equal to the 
c axis of the normal two-layer unit cell. Growth faults 
give sequences ABABCBCB.. .  or ABABACAC. . .  
Hence there are two types of fault occurring with 
equal probability. One fault, occurring at z = 0  gives 
a shift vector $1 = (1)A + (½)c with one plane of atoms 
added. The other fault occurring at z=½ gives a shift 
$2 = - (½)a- (½)c = - $1 and one plane of atoms is 
subtracted. 

Deformation faults in h.c.p, structures can also be 
described in terms of two types of fault having equal 
probability. A fault at the z = 0 level has a shift vector 
S = - a / 3  with no modification of the structure. The 
other fault, at z=½, has a shift vector S = a / 3  but at 
the fault the layer structure changes from the normal 
AB sequence, with one atom at (0,0) and one at 

1 Z  ( - -  3, 2)" 
For f.c.c, structures it is convenient to take an 

oblique unit cell with the c axis, for example, from an 
A position in one layer to a B or C position in the next. 
There are thus two translation vectors R~ and R2, 
corresponding to the two equivalent packing sequences 
ABCABC. . .  or ACBACB. . .  (see Fig. 2). A growth 
fault corresponds to a change from one translation 
vector to the other, with no change of layer structure 
and shift vector S = 0. A deformation fault is character- 
ized by a shift vector S = a/3 for the stacking sequence 
defined by translation vector R1 and by S = - a / 3  for 
the R E variant. 

For each of these cases the form of the diffraction 

1 1  ]" I T 
A B C A B C A B C A B 

HCP FCC 

/ -  

Fig. 2. Representation of hexagonal close-packed h.c.p, and 
face-centered cubic f.c.c, stacking by consideration of atom 
positions on a (110) plane. For the h.c.p, the shift vectors 
S and - S  associated with growth faults are indicated. For 
the f.c.c, the growth fault shown involves a change from 
translation vector R1 to R2. The shift vectors $1 and S2 
associated with deformation faults for the two structure 
variants are also indicated. 
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intensity distribution can be derived readily from the 
general expressions (7) or (9). For most purposes the 
modifications of the structure at the fault for the h.c.p. 
stacking sequence can be ignored. 

As a simple example we consider the case of growth 
faults for the f.c.c, structure. For the two types of layer 
FI=F2,  but R1 and R2 differ, S = 0  and ~12=0C21=a; 
gl=g2=½.  Writing for convenience expR1 for 
exp {2~ziu. R1} and (R~) for [ 1 - ( 1 - a )  exp (2zciu. al}], 
the expression (9) becomes 

F [ ~expR1 [ ~expR2 [ 
I/N- 2(R1) F +  (R2) F +  (R1) F 

+ ]]] 

+ - 2 ~ -  F + ,  (R,) F +  (R2) 

which simplifies to 

I (n) /N= ~(1 - ~)F2[1 - c o s  2~u. ( R I -  R2)] 
x [ 2 -  40c + 3e 2 -  (1 - c02{2 cos 2rm. R1 

+ 2 cos 27m. R 2 -  COS 2Zm. (R1-  R2)} 
+ (1 - 2~) cos 2zm. (R1 + R2) ] - 1. (16) 

In terms of rectangular axes, with a c axis per- 
pendicular to the layers, R~ + R2 = 2a/3 and R1 + R2 = 
2c. The periodicity of the individual layers confines 
the intensities to the lines for which u .  a is integral. 
If u .  a =  3n the intensity is zero except for the sharp 
peaks for u .  e integral. For u .  a = 3 n +  1, there are 
intensity maxima for u .  c =  m + ½ for integral m. The 
height of the maxima is proportional to (1 -a ) / a .  

The other types of faulting in close-packed struc- 
tures may be treated with equal facility to give results 
similar to those obtained by other methods. The main 

advantage of the present approach for this type of 
problem seems to be that it is easier to define fault 
vectors, with or without additions and subtractions at 
the fault, than to construct 'probability trees' or the 
equivalent. For the more exotic type of fault systems 
occurring in more complicated structures the appro- 
priate simplification of the more general results is not 
usually difficult to determine. 

This work was supported by NSF Grant GH-36668. 
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